Solids Control for Underground Construction Applications

About the Course

Drilled solids can be extremely detrimental to operations if not properly managed. Solids Control equipment is the most cost effective way to remove drilled solids. Learners will be guided through the slurry system and the implications as they relate to drilled solids. Emphasis is placed on optimizing equipment that removes sequentially finer drill solids. Overall, this is a comprehensive course designed to enhance an individual's knowledge of solids control operations.

Main Areas of Focus

- · Purpose and history of solids control equipment and processes.
- Instruction on the design, operation and application for the following equipment: Primers, Shale Shakers, Hydrocyclones, Centrifuges, Agitators and Pumps.
- Guidance and theory on basic slurry fluid, mud testing, and solids control analysis.

Who Should Attend

The course is designed for new hires, rig personnel, civil and underground operators, mud engineers, service technicians, and any other personnel who work directly with solids control equipment.

Course Specifics

Instructor: Matt Wiggins

Course Length:

1-3 days*
*Includes test tank and lab sessions

Time:

8:30 AM - 4:00 PM*

*Breakfast, snacks, and lunch are provided

Price: TBD

Class Limit:

30 students

Required Attire:

- Jeans or Long Pants
- Shirt: No Vulgarity
- Closed-toed shoes

*Safety equipment & tools are provided

Schedule subject to change based on enrollment

Civil & Underground Construction - Course Outline

	Course Name	Learning Targets	Solids Control Key Outcomes	Engagement
Day 1	Derrick Equipment Company Overview	 ✓ History ✓ Locations ✓ Services 	Derrick key contacts & information	
	Drilled Solids	 ✓ Formation ✓ Particle Sizing ✓ Detrimental Effects 	Understanding rock & clayCuttings examinationSolids sizing	 Identify cutting shapes/sizes - create a visual of micron ranges Calculate specific gravity & LGS% Targets Corn viscosity demonstration
	Slurry Fluids	 ✓ Brief history ✓ Functions ✓ Rheology ✓ Mud testing 	 Basic mud design Filter cake, fluid loss Contaminants How does it all relate to Solids Control 	 Mud lab: build and correct a WBM Calculate & graph mud properties Build a filter cake Hardness control & inhibition
	Primer	✓ Use & importance	Specifications & use on rig	• Visual tour, training bay hands on tour
	Mud Agitators	✓ Agitator specifications	Basic operationTank selection	Mud tank agitator sizingClassroom agitator model
Day 2	Shale Shaker Overview	 ✓ Parts of a shaker ✓ Dynamics & efficiency ✓ Troubleshooting & maintenance 	Shaker optimizationCompetitive Comparison	Labeling parts of a shaker gameMeasure and calculate G forceHands on test tank demo
	Screen Technology	 ✓ Brief history ✓ API RP 13 C ✓ Screen comparisons ✓ Screen performance 	 Screen sizing Cut points Screen analyzing Issues Care 	 Screen change on Derrick & competitive shakers Screen Microscope Screen Animation Screen Testing
	Pumps	✓ Design & specifications	Suction & operating basics	Test tank pump sizing activityFeet/head & pressure calculations
Day 3	Hydrocyclones	 ✓ Hydrocyclone design ✓ Factors affecting cones ✓ Troubleshooting 	Feet/head requirementsOptimizationMaintenance	Hydrocyclone troubleshooting activity
	Centrifuge	✓ Stokes law✓ Centrifuge overview	General operating guidelines in weighted & unweighted mud	Centrifugal force videoStokes Law demoCentrifuge test tank demo
	Solids Removal System Design	✓ Mud tank arrangement✓ Suction & flow	 Understanding weirs & suction Setting up your optimal processing line 	Installation challenge (classroom)Animated tour
	Drilled Solids Calculations	 ✓ Hole volume ✓ Dilution basics ✓ Solids Removal 	Importance of basic solids removal efficiency	Calculating drilled solids & Removal Efficiency
	Solids Control Review	 ✓ Quick quiz ✓ References ✓ Zip drive ✓ Course evaluation 	Assessment for learning	Recap & discussion